Customer Integration Guidelines Senseair Sunrise and Sunlight CO₂

The Senseair Sunrise and Sunlight CO₂ is very configurable and can be tailored to a wide range of specific application.

Standard Specifications Electrical Specifications	
Electrical Pin Description	3
Absolute maximum electrical ratings	3
Recommended operating electrical conditions	3
Electrical and power characteristics Physical Dimensions	
Operating Environment Specification	4
Temperature and humidity operating range	4
Warm-up time. Electrical Integration Illustration	
Modbus over UART integration illustrations	5
Modbus settings and registers	5
I2C integration illustrations	6
I ² C settings and registers Low power integration Current consumption	7
Power consumption diagram @ Continuous measurement mode	
Power consumption diagram @ single measurement mode Timing table Senseair Sunrise and Sunlight	9
Parameters for synchronizing Reconfiguring the application fitness of Senseair Sunrise and Sunlight	
Single measurement mode vs continuous measurement mode	12
The measurement periods	13
Number of samples for integration per measurement	14
IIR filter on CO ₂ measurement readings	14
Atmospheric pressure effect on CO ₂ reading value	15
CO ₂ unfiltered measurement register, CO ₂ filtered measurement register, CO ₂ pressure compensated unfiltered measurement register and CO ₂ pressure compensated filtered measurement registers	
Response times Calibration types	
Zero Calibration	18
Background Calibration	18
Target Calibration	18
ABC Calibration	18
Forced ABC Calibration	
Error codes and action plane Peripherals and Senseair Sunrise Evaluation Kit Revision history	22

Standard Specifications

@ PSP4731, Sunrise 006-0-0002
 @ PSP11704, Sunrise 006-0-0007
 @ PSP12440, Sunrise 006-0-0008

Open the hyperlink of the desired model or it can be found at Senseair website "<u>www.senseair.com</u>" under Sunrise product

Electrical Specifications

Electrical Pin Description

@ PSP4731, Sunrise 006-0-0002

- @ PSP11704, Sunrise 006-0-0007
- @ PSP12440, Sunrise 006-0-0008

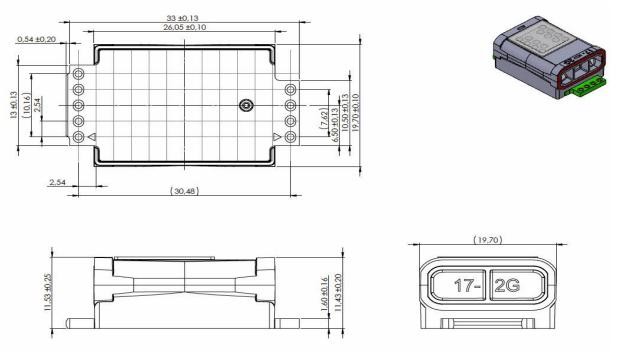
Absolute maximum electrical ratings

@ PSP4731, Sunrise 006-0-0002

- @ PSP11704, Sunrise 006-0-0007
- @ PSP12440, Sunrise 006-0-0008

Recommended operating electrical conditions

@ PSP4731, Sunrise 006-0-0002


- @ PSP11704, Sunrise 006-0-0007
- @ PSP12440, Sunrise 006-0-0008

Electrical and power characteristics

- @ PSP4731, Sunrise 006-0-0002
- @ PSP11704, Sunrise 006-0-0007
- @ PSP12440, Sunrise 006-0-0008

Physical Dimensions

Refer to the Senseair Sunrise and Sunlight Handling Manual <u>ANO4947</u> for considerations for mounting distances and correct mounting procedures.

Operating Environment Specification

Senseair Sunrise and Sunlight are intended, but not limited, to commercial and residential buildings, industrial applications, and outdoor applications

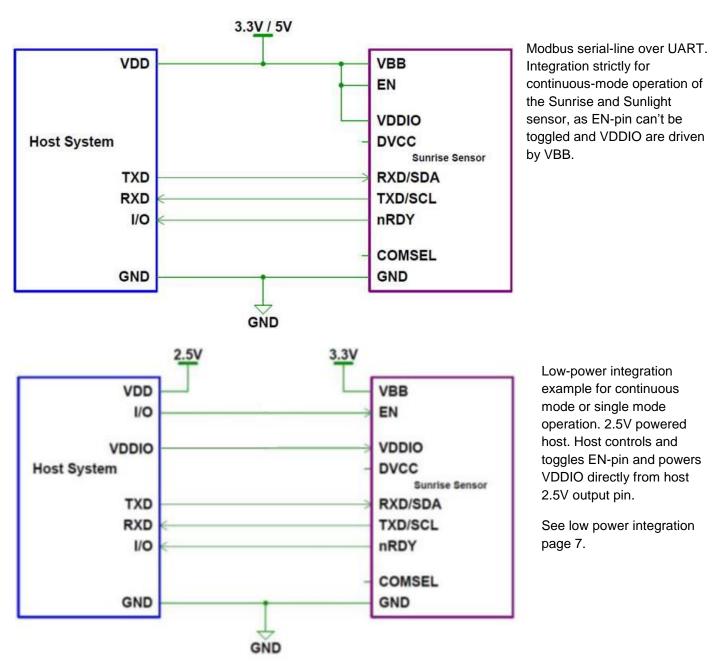
Temperature and humidity operating range

At higher than specified absolute humidity and relative humidity levels, stated accuracy cannot be guaranteed.

At lower temperatures than specified, e.g. freezing temperatures, there is risk of micro-condensation and ice crystals forming inside the optical bench, causing diffractions to the irradiated IR optical path, and greatly impacting performance. If operation below dew point or in freezing environments is required, please contact Senseair.

At higher temperatures than specified, the internal temperature-compensation for gas concentrations will be less accurate. If calibrated accuracy and function is required for wider temperature ranges, please contact Senseair.

Warm-up time

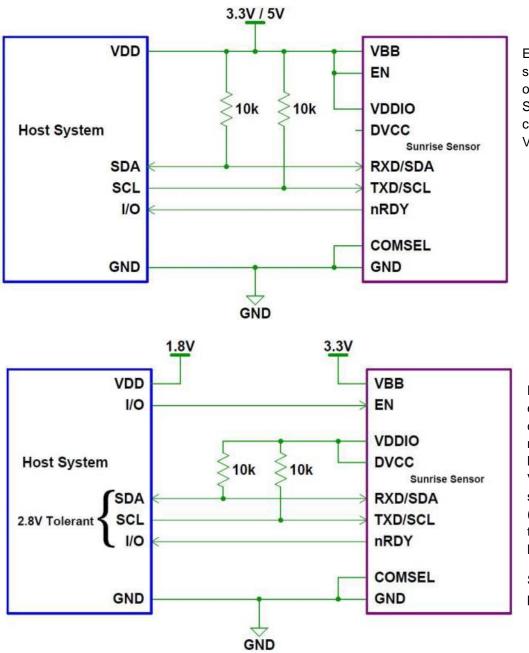

There is NO warm-up time required for the Senseair Sunrise and Sunlight, the very first measurement would be accurate within stated accuracy specification and average RMS noise after a reboot or power cycle. This due to the miniscule circuitry-heating of Senseair sensor chipset, and with the typical integration of several samples per presented concentration value and measurement period.

This is important for integration design, as the power cycle in single measurement mode can be optimized greatly by working perfectly by only making one measurement before it reverts back to low-power sleep or shutdown. Every measurement is trustworthy with this sensor.Please make distinction between Sunrise and Sunlight's warm-up and settling time from a shutdown and power-off, and full acclimatization time to conform to a new steady-state from actual changes in the ambient environment.

Electrical Integration Illustration

Modbus over UART integration illustrations

Optionally, although not recommended, an additional input pin can be saved on host by leaving nRDY floating and implement synchronization and handshaking by worst-case timings.


If there are high capacitance on TxD/SCL connection used (e.g. by long wires), then the internal pull-up to VDDIO on TxD (100 k Ω) might require that an external pull-up is added for assistance.

Modbus settings and registers

Please check <u>TDE5514</u> at Senseair website for more details and examples.

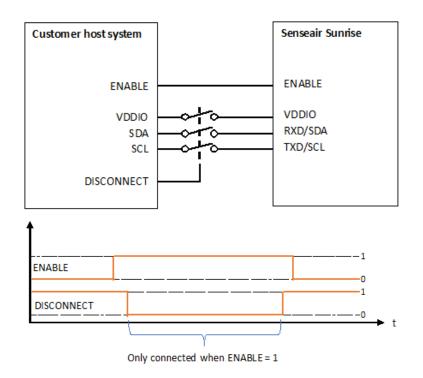
I2C integration illustrations

Example I2C integration strictly for continuous-mode operation of Sunrise and Sunlight sensor, as EN-pin can't be toggled and VDDIO is driven by VBB.

Low-power I2C integration example with 1.8V host for continuous-node or single mode operation. Host having 2.8V tolerant I/O:s. VDDIO is powered from sensors DVCC output (2.8V). Host controls and toggles EN-pin with 1.8V logic.

See low power integration page 7.

The Senseair Sunrise and Sunlight microcontroller's sleep feature, for lower power-consumption between actual memory operations, will wake the device up whenever there's a pulse detected on the SDA-line.

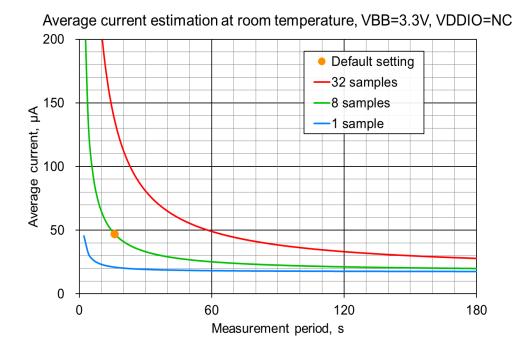

I²C settings and registers

Please check <u>TDE5531</u> at Senseair website for more details and examples.

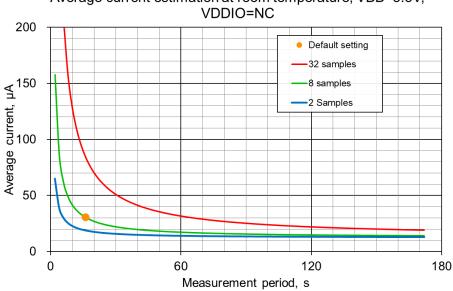
Low power integration

When the sensor is used in single measurement mode it's important not to have signals or pull-ups on the RXD/SDA, TXD/SCL and VDDIO line while EN-pin is low, as it would lead to leakage currents and could cause malfunction of the sensor. In order to do so, there are a few options for a system using Senseair Sunrise or Sunlight. For example, an electrical or mechanical disconnection on the communication lines and VDDIO (illustrated below), High impedance mode on host while EN-pin is low and pull-ups driven by the Enable line may also be a feasible solution.

And if a user considers using single-measurement mode, the extra power consumption overhead should be considered to read out and write back the needed and prepared sequential registers. During the reading/writing process, both sensor and the host system consume an amount of current/charge for the communications. So, the user should calculate which is preferred, continuous measurement mode or single measurement mode from a viewpoint of total current consumption over the system.



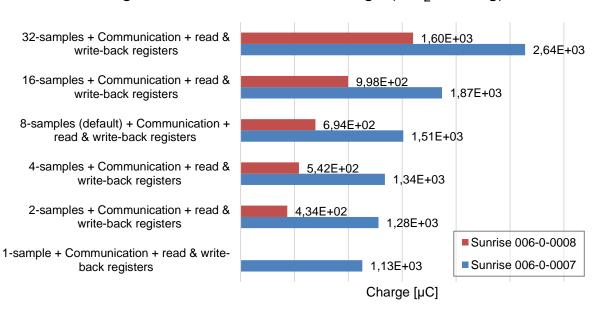
Current consumption


Graphs below shows minimum, default and 32 samples

Power consumption diagram @ Continuous measurement mode

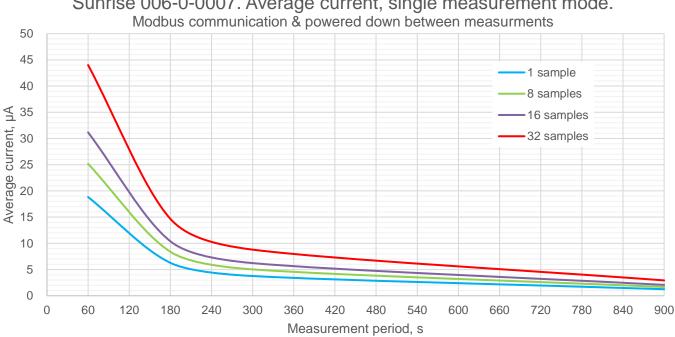
Default measurement settings: 16s, 8 samples Sunrise article number 006-0-0007

Sunrise article number 006-0-0008

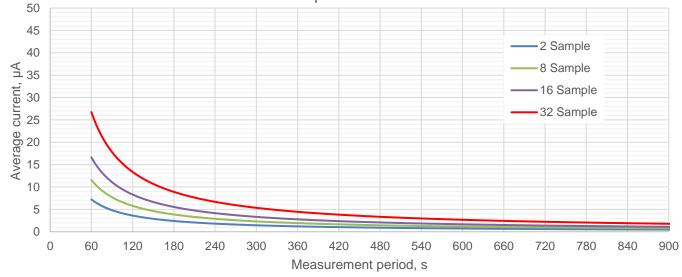


Average current estimation at room temperature, VBB=3.3V,

Ser L


Page Document Rev ©2023 Senseair AB. All rights reserved. TDE7318 14 8 (23)

Power consumption diagram @ single measurement mode


Single Measurement Mode Charge (CO₂ reading)

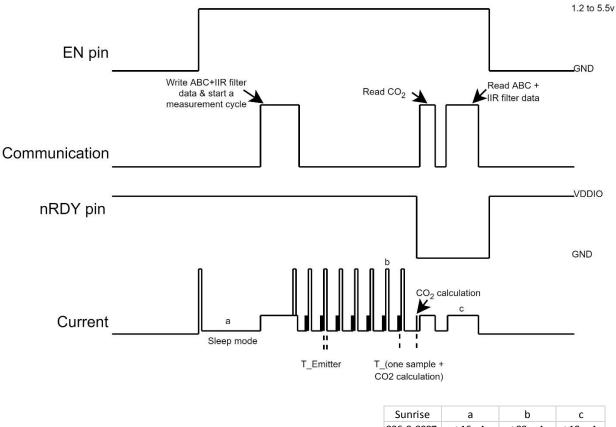
Senseair

Sunrise 006-0-0007. Average current, single measurement mode.

Sunrise 006-0-0008. Average current, single measurement mode. Modbus communication & powered down between measurments

Senseau I

Page Document Rev ©2023 Senseair AB. All rights reserved. 10 (23) TDE7318 14


Timing table Senseair Sunrise and Sunlight

Both Senseair Sunrise and Sunlight are recommended to be time synchronized with the host, to allow for implementation of Senseair's sensors without host polling the nRDY-pin, and hence save one GPIO pin.

Article number	Parameters	Min [ms]	Typical [ms]	Max [ms]	Comments
006-0-0007	T_Start		35		Ready for communication after MCU start
006-0-0008				-	
006-0-0007	T_Sample	160	180	300	Time for one sample and CO ₂ calculation, min and max time applied for temperatures between -40°C to +125°C
006-0-0008			171	200	
006-0-0007	T_Emitter		0.22	0.25	Emitter on time
006-0-0008					

Parameters for synchronizing

Below are the important timings and power consumption to model time-out responses in host, while in singlemeasurement mode

	Sunrise	а	b	С
C	006-0-0007	~16 µA	~99 mA	~10 mA
C	006-0-0008	~13 µA	~90 mA	~7 mA

Reconfiguring the application fitness of Senseair Sunrise and Sunlight

Senseair Sunrise and Sunlight are highly flexible sensor, and can be configured in multiple ways, generally by writing to registers set in firmware, for optimal application fitness.

Single measurement mode vs continuous measurement mode

One of the first integration design choices is whether to have the Senseair's sensor continuously make measurements with a fixed measurement period, or to power-up and react by performing a single measurement initiated by demand from host.

Continuous measurement mode

Continuous measurement mode may be easier to integrate and design for, but can still allow for different measurement periods and different set number of samples on occasions. This requires nothing more than for these new changes to be written to the Sunrise or Sunlight, followed by a command to initiate a soft reboot in firmware.

The total number of EEPROM write cycles should be less than 10000, this means that too frequent writes to these registers will lead to a corrupt EEPROM. When writing multiple (EE) registers in one sequence then this write cycle will be counted as just ONE write cycle out of the 10000 that are allowed writes to the EEPROM. All new written data to register (EE) can be read back after a sensor reset is completed.

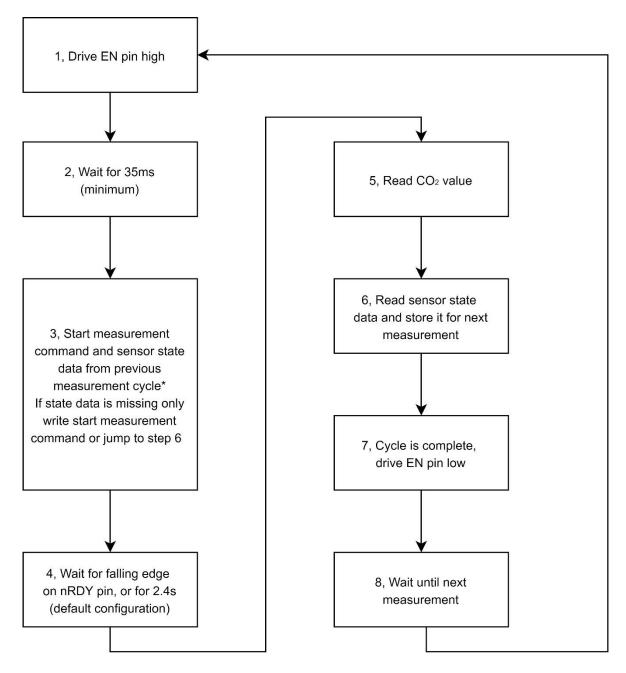
Otherwise, the continuous measurement mode lends itself best to fixed measurement periods with the same predefined number of samples. Measurement accuracy, response time and power consumption will be predictable and can be optimized for onboard datalogging memory capabilities or monitoring control or safety needs, or balanced to match any potential upload bandwidth speeds and data rates to move filtered and condensed data over to a cloud server.

Single measurement mode

Single measurement mode allows Senseair Sunrise or Sunlight to be put into shutdown mode when not in use, compared to the normal low-power sleep of the microprocessor in-between operations.

When EN-pin is driven low, the internal voltage regulator powers down the circuitry and all volatile memory is lost. During shutdown mode, it's even possible for power to be disconnected completely in-between the wanted measurement frequency by an external low-leakage switch.

As such, some critical timers and calibration parameters for the sensor's long-term maintenance-free operation need to be read and transferred to a retention memory on host prior this shutdown, and to be written back to Sensor's memory upon next boot-up cycle.


It's important to highlight with this that, both Sunrise and Sunlight generates only miniscule circuitry-heating and hence don't have a thermal acclimation time to reach steady-state (thermal equilibrium with its surrounding), warm-up time is zero. In addition, with the typical integration of several samples per measurement value for each measurement period, it can be concluded that even the very first reading from the first measurement period after boot-up and power-on, and If any kind of action or event-based or dynamic measurement frequency scheme is planned, e.g. to initiate and start measurements by a motion sensor or other switch, or to just have better data resolution and coverage during known time periods, e.g. more frequent measurements only during day time, or when lights are on. Then single measurement mode will allow this time- or event-control more effectively from the host.

Due to the extremely low-power consumption in shutdown mode, single measurement mode is often preferred when there is battery power involved.

Page

12 (23)

*If start measurement command and state data is written in two separate write sequences, state data must be written before start measurement command

Figure, Communication sequence for single measurement mode

The measurement periods

The largest impact to power consumption, measurement accuracy and application fitness is likely to be by selecting the measurement period, whether it be set and fixed in continuous mode, or more dynamic and resulting by single measurement mode controlled by the host.

The measurement period needs to be set as strictly longer than the number of samples times "180ms".

Number of samples for integration per measurement

The second major design impact to power consumption and measurement accuracy comes by choosing the number of samples, the actual number of active measurements which the emitter will do, that will be integrated into a final measurement value during the set measurement period.

The default number of samples, to be performed and integrated into an average value per measurement, is set to 8.

Number of samples can be set up to 1024 samples per measurement, each sample taking <300ms (typical 180ms for Sunrise 006-0-0007 and <200ms for 006-0-0008 with a typical of 171ms) to perform, so the maximum number would require a measurement period to be about 308 seconds, or close to 5 minutes, to have enough time to integrate through all of them before an actual measurement response value would be presented. See table "Parameters for synchronizing" for timing parameters.

Adding more of these power-consuming samples, and also lowering the time the emitter is in standby by trimming the measurement period, will have a very large impact on accuracy as well as on power-consumption.

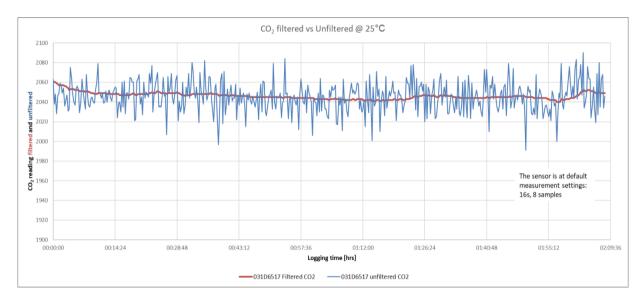
Measurement period recommended to be set longer than number of samples *times* T-sample max time "300ms/sample".

E.g. 16 samples will need 16* 300ms (T max time/sample) = 4800ms, the measurement period is 6s since 5s would be rounded up to nearest even number.

There will also be a marginal improvement to response time as the higher discreet sampling frequency can catch an ambient environment change happening earlier, instead of missing the start and first duration of the event until the next active measurement sampling period. Essentially, Senseair Sunrise and Sunlight are blind to any change happening while in standby and not actively sampling.

IIR filter on CO2 measurement readings

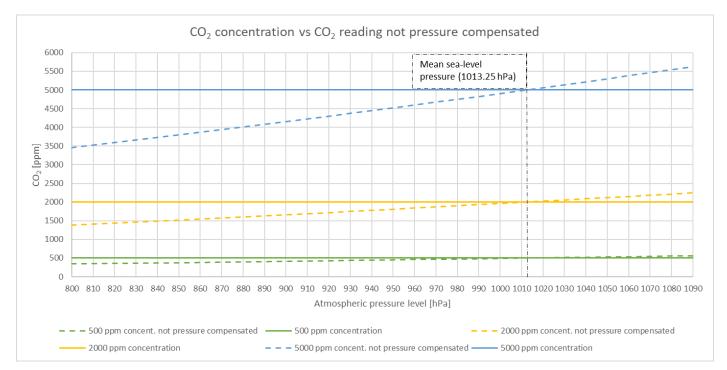
Senseair Sunrise and Sunlight implements a software IIR filter on concentration measurements, acting to suppress the CO₂ reading noise across multiple measurements.


This filter causes some additional lag in sensor response time by actively suppressing the full step change of each new perceived reading compared to the past one, and hence only allowing a fraction of the new change to propagate through and form the next CO₂ concentration measurement value (Static IIR filter).

This is highly effective in improving RMS noise under conditions when there are no actual changes to the environment in which the sensor is sampling. However, when there is a real change event happening, then a Dynamic IIR filter algorithm will modify the static fractional filter to decrease the CO₂ suppression, allowing a bigger part of the step change to propagate through, to help to indicate the environment's changes. Depending on how time-critical or how sensitive to noise and repeatability the system is, either of the data parameter can be more useful. This software algorithm is always calculated in parallel with the unfiltered concentration measurement.

IIR filter is enabled by default. The dynamic IIR filter depends on the static IIR filter, therefore if the static IIR filter desired to be disabled then it is necessary to disable also the dynamic IIR filter.

For measurement periods more than 1 minute it's recommended to disable both IIR filtrations and increase the number of samples. E.g., for 5 minutes measurement period, increase the number of samples from 8 (default) to 32 samples and disable both static and dynamic IIR filtration.

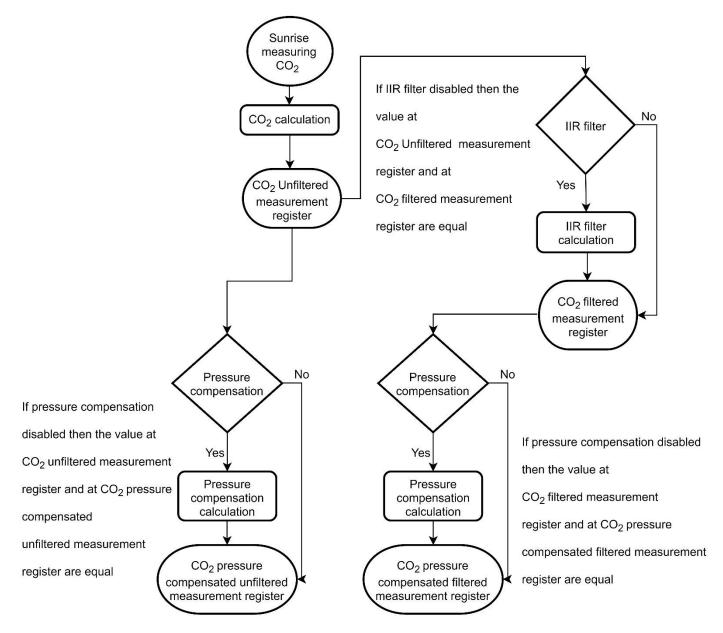


Atmospheric pressure effect on CO2 reading value

1.6% change in CO₂ concentration per kPa deviation from mean sea-level pressure (MSLP), 101.325 kPa. This pressure dependence on CO₂ reading is valid for typical atmospheric pressure variation around sea-level only.

To increase the end-customer Sensor experience, Senseair implemented a software algorithm to compensate the atmospheric pressure effect on CO₂. In general, while barometric pressure increases then CO₂ molecules increases inside this given volume (the sensor optical cavity), and the opposite is correct.

The below diagram presents how much the barometric pressure can affect the CO₂ reading inside a given volume but not the concertation.


CO2 unfiltered measurement register,

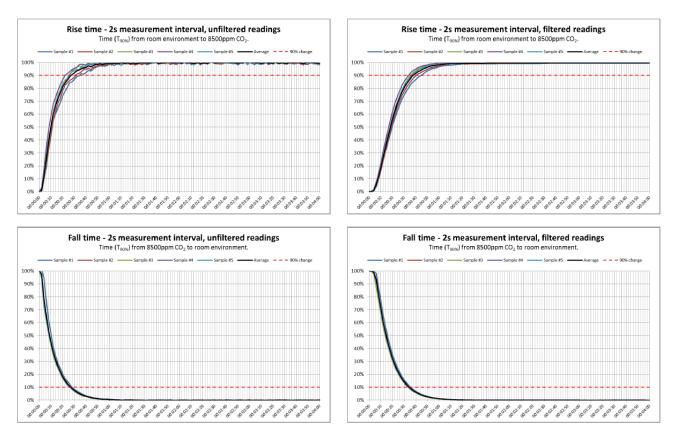
CO2 filtered measurement register,

CO2 pressure compensated unfiltered measurement register and

CO₂ pressure compensated filtered measurement registers

The below flowchart shows the connection between these 4 registers and how the values can be equal if both IIR filter and pressure compensated algorithms disabled or not.

Response times


Response times depends mostly on the test setup, the definition of response time requirement and the sensor measurement period.

The below diagram/table tested at stable gas concentration in an enclosure with Sunrise sensor that changed from 8500 ppm to fresh air (400ppm) and the opposite. Gas flow rate is 1L/min

	Unfiltered CO2 measurement	Filtered CO ₂ measurement
Response rise time T _{90%}	~30s	~40s
Response fall time T90%	~30s	~35s

The concentration change step response is affected by these factors:

- Measurement period is controlled by application host (2s during the test).
- · Transport model of gas matters, diffusion or convection flows
- Minimizing dead-volume of enclosure, ensuring no leakages that will inhibit diffusion of the full step change into optical sample cell.
- IIR filter active matters

Rev

14

Calibration types

The sensor will perform a calibration (Zero/Background/Target) based on the first measurement immediately after the calibration command was received, but the ABC and Forced ABC calibration will be based on the stored data at ABC parameters registers.

After having performed the calibration all following measurements will use the adjusted calibration parameters.

It is recommended that Calibration status is cleared before initiating a calibration and the calibration is initiated by the commands see more details at $\underline{\mathsf{TDE5531}}$ for I²C communication and $\underline{\mathsf{TDE5514}}$ for UART communication. Zero Calibration

Zero-calibrations are the most accurate recalibration routine and are not at all affected performance-wise by having an available pressure sensor on host for accurate pressure-compensated references.

A zero-ppm environment is most easily created by flushing the optical cell of the sensor module and filling up an encapsulating enclosure with nitrogen gas, N₂, displacing all previous air volume concentrations. Another less reliable or accurate zero reference point can be created by scrubbing an airflow using e.g. Soda lime.

Background Calibration

A "fresh air" baseline environment is by default 400 ppm at normal ambient atmospheric pressure by sea level. It can be referenced in a crude way by placing the sensor in direct proximity to outdoor air, free of combustion sources and human presence, preferably during either by open window or fresh air inlets or similar. Calibration gas by exactly 400ppm can be purchased and used.

Background calibration and ABC calibration share the same target value (fresh air = 400ppm), this value can be modified by changing the value at register "ABC Target" depending on where the sensor will be placed.

See an example at <u>TDE5531</u> for I²C communication and <u>TDE5514</u> for UART communication.

Target Calibration

Target concentration calibration assumes that sensor is put into a target environment with a known CO₂ concentration. A target concentration value must be written to Target calibration register.

See an example at $\underline{TDE5531}$ for I²C communication and $\underline{TDE5514}$ for UART communication.

ABC Calibration

The Automatic Baseline Correction algorithm is a proprietary Senseair method for referencing to "fresh air" as the lowest, but required stable, CO2-equivalent internal signal the sensor has measured during a set time period. This time period by default is 180hrs and can be changed by the host, it's recommended to be something like an 8 day period as to catch low-occupancy and other lower-emission time periods and favourable outdoor wind-directions and similar which can plausibly and routinely expose the sensor to the most true fresh air environment.

If such an environment can never be expected to occur, either by sensor locality or ever-presence of CO2 emission sources, or exposure to even lower concentrations than the natural fresh air baseline, then ABC recalibration can't be used.

In each new measurement period, the sensor will compare it to the stored one at the ABC parameters registers, and if new values show a lower CO2-equivalent raw signal while also in a stable environment, the reference is updated with these new values.

The ABC algorithm also has a limit on how much it is allowed to change the baseline correction offset with, per each ABC cycle, meaning that self-calibrating to adjust to bigger drifts or signal changes may take more than one ABC cycle.

Document

Rev

Page

18 (23)

Forced ABC Calibration

It uses the same reference registers as the ones for ABC calibration (ABC parameters registers). This feature added in case the host wants to speed up the baseline correction and not to wait the whole ABC period.

Forced ABC calibration can be used only when the ABC is enabled.

Error codes and action plane

Erro	ErrorStatus register					
Bit	Error description	Suggested action				
0	Fatal error	Try to restart sensor by power on/off.				
	Indicates that initialization of analog front end failed	Contact local distributor.				
1	Communication error	Try to restart sensor by power on/off.				
	Attempt to read or write to not exiting	Check wires, connectors and communication protocol implementation.				
	addresses/registers detected.					
2	Algorithm error	Try to restart sensor by power on/off.				
	Corrupt parameters detected.	Contact local distributor.				
3	Calibration error	Try to repeat calibration. Ensure that the environment is stable during calibration.				
	Indicates that calibration					
	has failed (ABC, zero, background or target					
	calibration).					
4	Self-diagnostics error	Try to restart sensor by power on/off.				
	Indicates internal failure.	Contact local distributor.				
	For article 006-0-008:					
	Detailed information of the failure can be found in bit 9-10.					

5	Out of range	Ensure that the environment is within the sensors operating range (see Product
	Indicates that the measured concentration, temperature	specification). If pressure compensation is enabled, provide valid pressure value for pressure
	or set pressure are outside	compensation.
	the sensor's measurement range.	Perform suitable CO ₂ calibration (zero, background or target calibration).
		Contact local distributor.
6	Memory error	Try to restart sensor by power on/off.
	Error during memory operations	Contact local distributor.
7	No measurement	0 – First measurement cycle completed
	completed	1 – No measurement completed
	Bit set at startup, cleared	If sensor is used in single measurement mode and powered down between
	after first measurement	measurements this bit can be used to verify started measurement cycle has finished
8	Low internal regulated	Check power supply.
	voltage	This means output voltage from internal regulator is lower than 2.8V or due to low
	For article 006-0-0007:	input sensor's voltage or due to internal regulator malfunction. Measurement data
	Flag is set if sensors regulated voltage is too	is not valid
	low, this means supply	
	voltage is lower than 2.8V.	
	Flag is cleared after internal voltage normalization.	
	For article 006-0-0008:	
	Flag is set if sensor's	
	internal regulated voltage drops below 2.8V and	
	sensor's reset occurred.	
	Flag shall be cleared by	
	proper power-off/on sequence, reset command	
	or by writing into "Clear	
	ErrorStatus" register.	
9	Measurement timeout	Flag is cleared after a successful measurement
	Flag is set if sensor is	If flag is set permanently try to restart sensor by power on/off.
	unable to complete the measurement in time.	Contact local distributor.
	For article 006-0-0008:	
	This flag set in combination	
	with the Self-diagnostic flag.	
L		

Senseair

.

Rev 14

10	For article 006-0-0008	Flag is cleared after a successful measurement.
	Abnormal signal level	If flag is set permanently, try to restart sensor by power on/off.
	Flag is set if an invalid measurement sample is detected.	Contact local distributor.
11	Reserved	
12	Reserved	
13	Reserved	
14	Reserved	
15	Reserved	

Peripherals and Senseair Sunrise Evaluation Kit

By connecting the Senseair Sunrise Evaluation Kit to the PC where Senseair standard software <u>UIP5</u> installed, the Senseair Sunrise sensor can be easily evaluated before start designing the host system.

Revision history

Date	Revision	Page (s)	Description		
2020-02-07	1-6	All	Sunrise article number 006-0-0002		
2021-04-12	7	3, 7, 8, 9	Sunrise article number 006-0-0007		
		11, 12, 19	Page 3	Standard specification, electrical specification added PSP11704 for 006-0-0007. Physical dimensions adjusted for 006-0-0007	
			Page 7,8	Current consumption diagrams updated for continuous and single measurement modes	
			Page 9	Sunrise timing, parameters for synchronizing and communication diagram updated	
			Page 11	Single measurement mode, figure-communication sequence	
			Page 12	Timing adjusted based on max sampling time (300ms)	
				Recommendation to disable static & dynamic IIR filters and increase the number of samples if measurement period > 1 minute.	
			Page 19	Revision history added	
2021-04-27	8	All	Senseair log	gotype modified	
2021-04-27	9	19	Rev. 8 changes added to this table (Revision history)		
2021-07-28	10	3	Hyperlinks updated		
2022-02-08	11	3, 5, 7, 8-10, 11, 14, 19-21	Page 3	Standard specification, electrical specification added PSP12440 for 006-0-0008.	

Senseair

1 I I

			Page 5	UART low power integration text updated and update of illustration two (VDDIO connection)	
			Page 6	I2C low power integration text updated	
			Page 7	Low power integration text updated and added illustrations	
			Page 8-10	Current consumptions diagrams added and updated for continues and single measurement mode	
			Page 11	Sunrise timing, parameters for synchronizing and communication diagram updated	
			Page 14	Text in number of samples updated	
			Page 19-21	Update of Error Status registers	
			Page 1, 4-7, 11, 12, 14	"and Sunlight" added after Sunrise	
2022-10-05	12	All	Senseair log	go modified.	
			Added ©2022 Senseair AB. All rights reserved.		
20230209	13	All	Changed page breaks		

www.senseair.com

